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Ivan Galkin and GIRO Science Team
Space Science Laboratory, University of Massachusetts Lowell, USA

IRI 2023 COSPAR CBW 
May 9, 2023● KASI, Daejeon, South Korea

Your text here
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 Ionosondes and the measurements they take
 Realistic Ionosphere (RION) 
 Databases and services
▪ Incl. DIDBase, GAMBIT, TID Explorer, and RayTRIX

 Real-time IRI Task Force: weather nowcast 
and forecast 

 AI for IRI
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Guglielmo Marconi
Cross-Atlantic wireless communications via ionosphere (1901)
Nobel Prize: 1909

Oliver Heaviside and Arthur Edwin Kennelly 
Announced existence of ionosphere to explain Marconi’s result (1902)

Sir Edward Victor Appleton 
Discovered Kennelly-Heaviside layer (1920), labeled it ‘E’
Discovered two more layers above and below E, labeled ‘F’ and ‘D’ (1926). 
Refused relabeling them to ‘A’, ‘B’, and ‘C’. 
Nobel Prize: 1947
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 1925
 Cavendish Lab, Cambridge, UK

▪ Appleton and Barnett
▪ Chirp sounding

 Carnegie Institute of Washington, USA
▪ Brett and Tuve
▪ Pulsed sounding, 1 ms, 2 frequencies

 1930s
 Outburst of HF devices probing higher altitudes 

in the ionosphere
▪ 6 people needed to operate one

 1931, Jan 11: Slough Observatory, UK: first 24-
hour sequence of monitoring critical frequency

 1934: HF Broadcasting era

Part of ionosphere lighted by precipitating particles
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 Answer to demand of continuous MUF 
monitoring for HF broadcasting stations
 Maximum Usable Frequency
 Much like terrestrial weather service

 New technologies by Theodore Gililand, USA
 Colocated Tx and Rx
 Recording device!
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 URSI Standard List ©1989
 ~80 different kinds of ionogram-derived values
▪ NmF2, hmF2, foEb, … … 

 ARTIST has ~ 48 of these
▪ Analysis time per ionogram? 
▪ Manual analysis is not realistic anymore… too expensive
▪ Why? Who cares? New science after 100 yrs of research?
 The right question is “which ones are especially important”?
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 NmF2, hmF2, B0, B1
 NmF1, hmF1, D1
 Interim layer: Hz

 Valley: hvt, Nvb

 NmE, hmE, HDX

 NmD, hmD, Ha

 No topside spec possible

16
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 Accurate Global Prompt Nowcast and Forecast
 Near-real-time data are in demand
 Ionosphere has a short memory

▪ Measurements 1 hour old are 50% useful in nowcast
▪ Measurements 4 hours old are not useful

 Global sensor networks with continuous data streams 
at <1 hr latency?
▪ Space-borne ionosphere observing fleet… not quite ready
▪ Ground-based network

▪ GNSS “Ultra-rapid” and nRT networks, ~300 receivers
▪ …and then there are HF ionosondes and GIRO
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 Real time

 BY NC SA 
academic use

 Standard URSI 
chars is just a 
beginning…

LGDC
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GNSS PPP / RTK
• Affected systems: autonomous 

vehicles and machinery 
• TID as a Silent Accuracy Killer

• Worse than the loss of 
lock and scintillation

• (Hard to detect)

HF Geo
• Geolocation of uncooperative 

HF transmitters
• Tens of km positioning errors
• Short-range catastrophe

during TID passages

Managing HF Communications
• High-reliability low-latency messaging/voice

• Instant business transactions
• Rescue/covert missions, soldier-to-headquarters comms
• Dispatcher-to-pilot safety messages, esp on transpolar flights
• HAM radio enthusiasts

Traveling
Ionospheric
Distrubance
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GIRO IRTAM 3D SkyLITE IDITID Explorer

RION

Measurements Global Model Plasma Drifts TID Warnings
Disturbance 

Indicator
+Es

RayTRIX

Dourbes to Athens

Raytracing

United Nations International Space Weather Initiative

http://giro.uml.edu/RI/Skymap.png
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 https://giro.uml.edu
 Access to all GIRO 

resources

 Some real-time data 
are “public”
 CC BY NC SA

▪ non-commercial use
▪ need to credit providers
▪ share-alike
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IRI-based Real-Time Assimilative Model
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One day of ionospheric dynamics
1D vertical profile of plasma density

“Ionosphere is a major operational nuisance” © USAF
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+ =

Ionosonde Network Real-Time hmF2 Global hmF2 Weather



IR
I 2

02
3 

CO
SP

AR
 C

ap
ac

ity
 B

ui
ld

in
g 

W
or

ks
ho

p 
 ●

M
ay

 8
-1

3,
 2

02
3 
●

Da
ej

eo
n,

 S
ou

th
 K

or
ea

 

18

Natural Neuron Artificial Neuron
(classic spin)

(mean-field also available)

Neural Network Energy Function
of Neural Dynamics

The roaring 1990s: an outburst of algorithmic NNs to replicate human intelligence
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 Training phase
 present NN with known examples (input and output) for training 

▪ determining the Wij weights – back-propagation method

 Execution phase
 WHAT-IF: present trained NN with previously unknown inputs to obtain a predicted 

output
 Superior inductive bias of NNs: the capability of gleaning the nature of the system in 

order to do good WHAT-IFs.
 Superior but little understood

▪ Black-Box: No clue how and why it works well
▪ Caused a severe AI Winter in the 2000s

▪ NSF would not fund NN projects
▪ Physics journals would not publish NN model results

▪ White box and Gray box 

 All feed-forward NN architectures are in “historical analogies” category
 Subject to AI Winter
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 Train a NN to predict peak 
density in the ionosphere 
NmF2, as a function of:
 Time of day
 Date (year, day of year)
 Location (lat, lon)

 WHAT-IF: run for different 
dates, times, and locations

Longitude

Date
NmF2

Time of day t

QUIET-TIME PREDICTION NN MODEL

Research funding agencies: 
no-no, this is a SNAKE OIL

20

Latitude
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 Train a NN to predict quiet-time 
peak density in the ionosphere 
NmF2 12 hours ahead, as a 
function of:
 Time of day
 Month
 Location (lat, lon)
 Sunspot number
 Modip

 WHAT-IF: run for different dates, 
times, locations, R12, modips

(lat,lon)

Month
NmF2

Time of day t

QUIET-TIME PREDICTION NN MODEL

Research funding agencies: 
no-no, this is a SNAKE OIL

21

R12, modip
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 Train a NN to predict peak 
density in the ionosphere NmF2 
12 hours ahead, as a function of:
 Time of day
 Date (year, day of year)
 Location (lat, lon)
 Geomag index Kp

 WHAT-IF: run for different Kp
values, dates, times, and 
locations

Kp, R12, modip

(lat,lon)

Month
NmF2( t + 12 hrs)

Time of day t

FORECASTING NN MODEL FOR 12 HOURS AHEAD

Research funding agencies: 
no-no, this is a SNAKE OIL

22
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 Analysis of Weather anomalies observed at 
the sensor sites to smoothly transform the 
underlying IRI (morphing)
 This is the IRTAM principle
 NO NEED to capture the geophysics of sun activity, 

modip migration, seasonal specifics – IRI does it 
for you

 Just morph IRI into agreement with observations
 Classic GRAY BOX approach
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+ =
Ionosonde Network Real-Time hmF2 Global hmF2 WeatherGlobal hmF2 “Climatology” IRI
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ACCESS TO IRTAM DATA

GAMBIT EXPLORERFree for academic use: GAMBIT Explorer UserApp 1.0A 
Download from https://giro.uml.edu/GAMBIT/

+ source code to integrate IRTAM coefficients from 
GAMBIT database with user applications

CLICK FOR 
DETAILS

https://giro.uml.edu/GAMBIT/
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 3DDA = assimilation of the latest data
 4DDA = previous data history is analyzed at the update step of 

assimilation
 IRTAM = 4DDA with 24-hour history analysis
 Looks at 24-hour deviations from IRI, ΔP
 Computes diurnal harmonics of ΔP
 Each harmonic i is analyzed separately during the spatial expansion of ΔPi
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 GAMBIT = Global Assimilative Modeling of Bottomside
Ionosphere with Topside extension
 Includes access to 23 years of IRTAM computations
 Includes access to MIT Madrigal VTEC collection
 Uses data fusion of GIRO and GNSS capabilities to reason about 

“effective slab thickness” of the ionosphere
▪ Certain views of topside ionosphere using only ground-based sensor 

systems
▪ Low latence real-time applications of space weather

 Available for download at https://giro.uml.edu/GAMBIT
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 Train a NN to predict deviation of 
NmF2 from the expected quiet-
time behavior 12 hours ahead, 
as a function of:
 Time of day
 Location (lat, lon)
 Geomag index Kp

 Run it for different Kp values and 
locations (what-if)
 Obtain 2D map of ΔNmF2
 Apply Δ to quiet-time predicted 2D 

map of NmF2

Kp

Latitude
delta-NmF2( t+12)

Time of day t

FORECASTING NN MODEL FOR 12 HOURS AHEAD

Research funding agencies: 
this is a GRAY BOX, but 
probably will not be convinced

30

Longitude
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Global real-time VTEC and NmF2 for slab thickness evaluation
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 GAMBIT Explorer has connection to Madrigal database of VTEC
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Δ vTECΔ Peak Density Δ Slab Thickness

ΔfoF2 ΔvTEC Δτ
VTEC data courtesy Anthea Coster, MIT Madrigal

Δ Peak Density Height

ΔhmF2
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 GAMBIT Explorer has connection to Olsztyn server

30-day Average VTEC Real-Time VTEC
very very soon
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ΔvTEC @ 6342 GNSS sitesΔNmF2 @ 60 GIRO sites

St. Patrick storm, March 17,  2015,  23:15 UT

giro.uml.edu/GAMBIT

vTEC data courtesy MIT Haystack Madrigal Repository

SED plume!

Super-fountain!
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GNSS GIM data in near real-time, soon!
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HF communications management
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TECHNIQUE APPLICATION RATING

1. Local Weather Charts foF2 HF Enthusiasts Good for NmF2, but only local

2. MUF computation for 
specific D

HF Enthusiasts Nice, but only near an 
ionosonde (local)

3. Negative phase detection 
from foF2 or VTEC timeline

PECASUS Good start

4. ΔMUF(3000) from foF2 and 
hmF2 maps

PECASUS Good

5. Ray-tracing through CQP
ionosphere nowcast

Specific radio link 
evaluation

Second Best: a few seconds on 
a GPU

6. Ray-tracing through realistic
ionosphere nowcast

Accurate evaluation 
of specific radio links

Best, but unrealistic for real-
time applicationsAll techniques are based on the real-time weather evaluation by ionosondes
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 https://giro.uml.edu/di
dbase/scaled.php

 Select time, ionosonde, 
MUF(D), and D
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 Use GAMBIT Situation Room
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• Blue blob detection using a threshold?
• Track blue blobs in time and space?
• Significant amount of work done at PECASUS already (Andriy, et al.)

Weather-minus-climate 
MUF(3000)F2
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Ray-Tracing through Realistic Ionosphere eXplorer
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 Oblique ionogram synthesis
 Full range of frequencies

 Based on IRTAM and CQP fit
 MUF(D) for any radio link
 All three layers, but E and F1 

data are not used in the 
assimilation

 Best frequency range for 
single-mode communications

 Running time: a few seconds

Dourbes-Athens
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 RayTRIX: Ray-Tracing through Realistic 
Ionosphere eXplorer portal

 This example is numeric raytracing 
through IRTAM ionosphere
 One frequency
 One propagation mode
 Two polarizations

 Raytracing is overlaid on D2D skymap 
measurement from Pruhonice to 
Juliusruh
 Raytracing: crosses
 Measurements: circles

 About 20 second computation time on a 
regular PCO1F2L measured

O1F2L modeled

O1F2H measured

http://giro.uml.edu/rix/ff-aoa

Manual annotation

Pruhonice to Juliusruh D2D data courtesy Dalia Buresova (UFA) and Jens Mielich (IAP)
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T-FORS PROJECT / HORIZON 2020
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Ebro Observatory, Roquetes

April 21-22, 2017

hmF2

1.4 MHz
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 1D Altitude profile of TID
 Detailed view of propagation along z-axis
 Pin-point to particular altitude region

 Sensitivity
 Detection of a 5% TID vs underlying density
 “TID are always present” < 1%

 Direction, Velocity, Wavelength

 Direct measurement
 Static platform (no motion effects)
 No slant-to-vertical transformation needed

 24/7 operations with automatic 
intelligent system analysis
 Replicate human intelligence

49

Isodensity Contours

Data courtesy Tobias Verhulst, RMI
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NORMAL OPERATION

Loss of Lock

ScintillationUndetectable
Loss of Accuracy

GNSS-DRIVEN NAVIGATION PROBLEMS

Ionospheric Plasma Disturbance Severity
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( ) ( ) [ ]{ }0 0 0, ; , , ; , 1 cos cos sinbg NN z t x y N z t x y A t K x y = + Ω − Θ+ Θ +Φ 
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Ebre

Dourbes

Juliusruh

Nicosia

Athens

Sopron

St. Petersburg

Průhonice

LampedusaEl Arenosillo

Phase I links

Phase II links

Upcoming DPS4D sites

TID tracking: D2D fixed frequency skymapping
One transmitter – one frequency
One receiver – one transmitter

®

®Belgrade

® ®

®

South Africa

Possible DPSR sites

Rome

Potential DPS4D sites
Warsaw
Kaliningrad

Tromso ®Sodankyla
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SkyLITE: Skymapping for Local Ionosphere Tilt Evaluation
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4-channel data Skymap & Vector Drift Velocity
HAARP Heating Experiment
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Ionosphere Forecast based on IRI
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 “Triggered” forecast of anomaly
 Alexa, play Storm by Kp=7
 SHAZAM! Associative Memory of drivers
 Dynamic Time Warping (DTW)
 Chat GPT for context evaluation
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 “Storm” option for NmF2 forecast 
in IRI, [Fuller-Rawell et al, 1999]
 Ap is tested for a threshold value to 

determine if the day is quiet or 
disturbed

 This is an “average” storm behavior
of ionosphere on disturbed days

 The storm behavior is stored as 
ΔNmF2 for any location and forecast 
time up to 24 hours ahead 

 Other “storm” options are 
pursued based on this principle
 Blanch and Altadill [2012]

{Ap} ΔNmF2(lat,lon,tfore)

tfore = (t, t + 24 hrs)

FORECASTING MODEL FOR UP TO 24 HOURS AHEAD

Research funding agencies: 
but this is an empirical storm model… oh well

59
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time
storm 
onset 
time

ΔNmF2

Library of remembered storm timelines in the context

quiet-time behavior

Forecast by analogy to an average “anomaly” timeline

0
quiet

HELIO/GEOSPACE CONTEXT OF THE STORM
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 Instead of an “average” storm, keep a library of previous storm 
timeline of ΔNmF2
 To forecast, just find the most relevant storm in the library

 Each timeline must be remembered in the context of the activity in 
the Sun-Earth environment
 i.e., not just replay of the storm using one “trigger”
 Need to build a grand timeline of events in the heliospace and geospace

 Need good ideas for 
 The storm library
 Search-and-retrieval algorithms
 Tweaking the library copy to current conditions
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X17 Solar Flare #2 X10 Solar Flare 
#3

22 hours of G5 storm

~19 hours
(solar wind at 2200 km/s)

Kp of 9o @ 0839 
UT

 Solar wind velocity 
can vary

 Timelines will vary 
as well

 But… natural 
language AI will 
come to the 
rescue!
 varying speed of 

words
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X28 Solar Flare #6

 X28 ranking 
is 
questioned: 
instruments 
got blinded!!

 Nothing 
arrived to 
the Earth, 
though
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 “Yesterday” is interpreted in the context of “play”
 Not a reference to one day earlier
 A title to be fetched from the database of song titles

 DEEP LEARNING: multi-layered recurrent (feed-back) network 
topologies 
 Support interpretation of subelements in the context of other cues

▪ Starting position of NN (the green ball) is determined from the context
▪ Network evolves into the closest stable condition (remembered state)
▪ That state propagates to the next layer of the network

 Appears matching to the idea of interpreting ionospheric dynamics in the 
context of the external forces acting on it
▪ Context: reports of ongoing Sun-Earth activity
▪ Output: ionospheric dynamics fetched from the historical record database
▪ What is different? Deep Learning the interplay of helio- and geo-activity markers
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 Detect “Alexa!”
 Recognition of the storm onset

▪ Solar flare?.. signature of CME?.. Solar wind pressure?.. lots of ideas!
▪ Maybe all of the markers must be used to determine reference time

 Then, somehow, interpret the available “Play Yesterday by The Beatles”
 Extract context cues to retrieve the best-matching storyline in the Storm Library
 Context of the sentence == Context of the relevant system driver storylines

 Retrieve and process the closest storm storyline from the library
 Process? Encoding is needed to avoid varying timing of the processes

▪ [to support varying speed of word pronunciation]

 Apply the processed storyline to forecast the upcoming departure of the stormy weather from the 
quiet-time model

 REPEAT
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 Ionosphere: immediate response to external 
forcing
 Thus its current conditions do not inform future 

states

 Need to use storylines of all external drivers as 
context 
 Cannot be just one instant “triggering” driver (e.g., 

Kp=6)
 Driver dynamics is matched (paired) to the 

ionospheric storm dynamics 
▪ Across the complete forecast storyline from onset to end

 Important: which driver is relevant out of the set? 
(Deep Learning helps; inductive bias)

Sensor data @ 2 hour latency are useless
high solar activity, mostly quiet time
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 Ionospheric response to the storm-
time impacts is not just a “triggered 
option for a disturbed plasma day”
 Context of the disturbed ionosphere 

dynamics is a continuous function of t
▪ Driver storylines need to be complete to 

retrieve the best matching storm in the 
library

▪ But in the forecast scenario, only an 
initial fragment of the storylines may be 
available

 Forecast shall be repeated as time 
progresses and larger fragments of 
the storylines become available
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 Note: not the storyline of the storm, but of the 
storm drivers
 Simpler task… divide and conquer
 It is the interplay of drivers that matters

 Associative Memory is one possibility
 Used in recognition of handwriting
 Also for recalling stored data from their noisy and 

incomplete realizations

 Recursive, feed-back NN architecture
 Hopfield networks
 No input layer, no output layer
 Neurons are clipped to available data and evolve 

into the nearest local minimum of E

Associative memory
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 Real-time data for forecasting by historic analogy are not easy to come about
 Need a consortium of real-time data providers

 PITHIA-NRF is an emerging space physics data infrastructure in Europe
▪ Look it up! www.pithia-nrf.eu
▪ HORIZON 2020 project
▪ Based on EGI Foundation mega-facility of computing resources

▪ Public funding = better prospects of longevity
▪ And a Network of Research Facilities (BRF)

▪ some facilities have decades of uninterrupted operation
 T-FORS is the pilot project to leverage PITHIA-NRF collections

▪ TID Forecasting System
▪ HORIZON 2020 project
▪ Listen to Elvira Astafyeva talk later this morning (TID)
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Library of ionospheric storm storylines
Deep Learning context-driven architecture

Time-neutral storage? (pronunciation)

Time Warping 
and Scaling

Climate
prediction

Weather
Forecast

Best-match
ΔNmF2history

Storm
onset time

Storm
onset time

ΔNmF2

Storm
onset time

Re
al

-t
im

e 
H

el
io

-a
nd

 G
eo

-D
riv

er
s

Associative memories
of the driver storylines

Driver
context

REPEAT: forecast quality improves with each iteration as 
longer storylines are coming in

Play “Yesterday” by The Beatles

key driver support drivers

add new storylines

IGRF
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 Warp library-provided storm 
storyline
 DTW finds similarity between 2 

storylines
 Driver storylines may be indicative 

of how different the actual storm 
timing is from the Library copy

 Corresponding time warping shall 
be applied to the correction 
ΔNmF2



IR
I 2

02
3 

CO
SP

AR
 C

ap
ac

ity
 B

ui
ld

in
g 

W
or

ks
ho

p 
 ●

M
ay

 8
-1

3,
 2

02
3 
●

Da
ej

eo
n,

 S
ou

th
 K

or
ea

 

“Classic” view of NmF2 Local Time Noon view of NmF2 De-magnetized view of NmF2
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• Total 1024 coefficients to store 24 hour 
global animated 2D maps ΔNmF2

• Can be expanded to 2048 coefficients to 
store 2-day storyline

Longitude

La
tit

ud
e

Climate
prediction

Weather
Forecast

Storm
onset time

ΔNmF2

IGRF

The IGRF model of the 
Earth magnetic field is 
needed to re-
magnetize the 
retrieved library
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 NOT to build a least-square regression on 1024 unknowns
 NOT to build a back-prop feed-forward NN with 1024 outputs
 Just memorize them, cleverly
 Associate the timeline of ionospheric dynamics with timelines of 

ionospheric state drivers
▪ Deep Learning: placing the storm vocabulary into the context of a 

“sentence” of ongoing geospace activity
▪ Rely on NN superior inductive bias to build the context
▪ Plus other tricks:

▪ Dynamic Time Warping (DTW)
▪ Associative memory (AM) 
 Restore a driver’s full storm timeline from its initial observed fragment

▪ Chat GPS ability to glean context and build output
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 Analogous to 
Sound/Syllable 
recognition

 Custom Language 
to describe storm 
progression
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 Deep Learning “Ice-Break” is ongoing in NN-based forecasting
 DL learns the system from its previous behavior

 A concept study of DL-based forecast of the ionospheric storm storylines:
 Forecast deviation timeline of the disturbed ionosphere 

▪ Deviation from the quiet-time LT-centered/demagnetized ionosphere
 Sync the deviation timeline to the actual/definitive storm onset time (Alexa!)
 Use Dynamic Time Warping to maintain a smaller vocabulary of the storm behavior
 Deep Learning to describe ionosphere timeline in the context of key storm driver timelines 
 For each activity driver, use associative memories to retrieve a full-length storyline from 

the initially observed fragment

 Procedure: 
 Detect storm onset, obtain full-length driver storylines
 Take 30-day median current ionosphere, LT-center, de-magnetize, 
 Retrieve deviation storyline from the storm library, time-warp to current activity 
 Apply deviation to the median, position at reference LT, re-magnetize.
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