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“Space weather is the  largest contributor to single-frequency GPS errors 

and a significant factor for differential GPS”
-Report of Policy Workshop developed by AMS (2011)



Damages Caused by Extreme Solar Storms
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• On December 6, 2006, a solar flare created an unprecedented intense solar 

radio burst causing large numbers of receivers to stop tracking the GPS signal.

(2007-04-04 NOAA Magazine)

• On October 2003,  WAAS service stopped for 30 hours due to the solar storms
(Severe space weather events - a workshop report _National Research Council, 2008)
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GNSS performance 
degradation

Solar flare

coronal mass ejection

Solar X-rays, solar radiation

Signal loss

Plasma Bubble

ScintillationStorm Enhanced Density

Traveling Iono. Disturbance

(Seo et al., 2011)

(Datta-Barua et al., 2010)

▪ Degrades system integrity/continuity/availability

▪ GPS signal delay/signal loss PNT accuracy degradation

Space weather effects on GPS

• Ionospheric delay error of up to 40 ~ 

50m→ accuracy degradation

(Yoon and Lee, 2014)

• Simultaneous satellite signal loss 

→ accuracy and continuity 
degradation

• Large delay variation → accuracy 
and continuity degradation

(Saito et al., 2010)

• Large delay variation and signal 

loss→ accuracy and continuity 
degradation



GPS (Global Positioning System)  
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• 24+ Satellites since FOC in 1995

(space vehicles, or SVs)

• 6 orbit planes, 60 degrees apart

• 55 degrees inclination

• 12-hour (11 hr, 58 min) orbits

• 26,560 km from earth’s center

• 20,182 km mean altitude

• moving ~2.7 km/sec



GPS error source
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Ionosphere Delay

Troposphere Delay

Signal in Space (SIS) error
- ephemeris

- satellite clock

- etc

Propagation error

- ionospheric delay

- tropospheric delay

Receiver and 

Local environment error
- receiver noise

- multipath

- etc



Ionospheric Effects on GPS Propagation delay
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 Due to a change in the speed of the signal

 Group delay and Phase advance

 Depends on the number of free electrons in the path of signal 
(TEC: total electron content)

 TECU: TEC unit
 1 TECU = 1016 electrons/m2

 1 TECU corresponds to a change in ionospheric delay
at L1 of about 16 cm

 Varies with location, local  time, season, geomagnetic  and 
solar activity
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Ionospheric effects on GPS Scintillation 
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 Irregularities in the distribution of free electrons can 
scatter radio waves 

 Rapid fluctuations in the amplitude and phase of 
received signals

 May induce loss of lock

 Characterized by Amplitude scintillation parameter, S4 
and Phase scintillation parameter, , 

 Rare at mid-latitudes

 Can be severe after local sunset in the equatorial  
regions, especially near the peak of solar cycle



Propagation delay as a function of (magnetic) latitude
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Contours of equal vertical 
ionospheric range delay, in 

meters at L1, 
for typical solar maximum 
equinox conditions at 00 
UT [SBAS Iono WG, 2003]



Scintillation as a function of (magnetic) latitude
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(P. Kintner, et al.)



Ionospheric delay estimation - Standalone GPS 
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 Ionospheric delay estimation in a single frequency signal
 Delay model is provided by Nav message. (ex. Klobuchar model)

 Ionospheric delay estimation in a dual frequency signal
 Estimation based on combination of dual frequency measurements
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Differential GPS – SBAS 
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GPS

Satellites

(Courtesy: FAA)

Ranging

Signal

Uplink

Stations
Ground Monitor

Stations

Users

Geostationary

Satellites

• Accuracy (Correction)

• Integrity

• Ranging

Augmentation

Signal



SBAS APV-I Coverage (current)
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Source by T. Walter, Presented at ENAC 2014



Ionospheric Delay Estimation - SBAS
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 Single frequency SBAS provides (vertical) ionospheric delay 
estimates at each IGPs (IGPs, Ionospheric Grid Points)

 Delay estimates from four IGPs around the user is used to 
compute Ionospheric delay corrections and user protection levels
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Solar Cycle with Great Magnetic Strom 
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WAAS APV service vs. geomagnetic activity
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10/29
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SBAS Performance



Planar Fit and GIVE
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• GIVE Equation

Formal Sigma Spatial Threat Temporal Threat

Spatial Threat Model

• Developed for WAAS; 

• MSAS employs the same algorithm;

• Assume ionospheric vertical delay can be 

modeled as a plane;

• GIVE (grid ionosphere vertical error): 

Uncertainty of the estimation including 

spatial and temporal threats.

Cutoff Radius

Vertical Delay

Fit Plane

IPP

IGP

Source:  T. Sakai, et al, “Modeling Ionospheric Spatial Threat Based on Dense 

Observation Datasets for MSAS” ION GNSS 2011.c



Ionospheric Spatial Threats
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Source:  S. Datta-Baura, et al, “Ionospheric Threats to SBAS” ION GNSS 2004
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Ionosphere Anomaly Front Model:
Potential Impact on a GBAS User

Simplified Ionosphere Front Model:
a ramp defined by constant slope and width

Front Speed

200 m/s

Airplane Speed 

~ 70 m/s

(synthetic baseline due 

to smoothing ~ 14 km)

Front Width

25 km

GBAS Ground Station

Front Slope

425 mm/km
LGF IPP Speed 

200 m/s

Stationary Ionosphere Front Scenario: 
Ionosphere front and IPP of ground station IPP move with same velocity.

Maximum Range Error at DH:  425 mm/km × 20 km  =  8.5 meters

Max. ~ 6 km 

at DH



Abnormal Gradients:  
Mid-Latitudes vs. Low-Latitudes
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Over CONUS 

(11/20/2003, 20:15 UT)

425 mm/km max.

Over Brazil 

(3/1/2014, 01:00 UT)

850 mm/km max. 
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Regional Ionospheric Delay Map (Video)
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Solutions
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 Understanding space weather
 Continue to advance present understanding of space 

weather and its impacts on satellite-based navigation 
systems and other critical infrastructure. 

 Develop better space weather predictions.

 Strengthen international collaboration
 Improve spatial coverage of ionospheric and space 

weather measurements. 

 Reduce vulnerability of safety-critical systems to space 
weather
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Thank You 
msyoon@kari.re.kr
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