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“Space weather is the largest contributor to single-frequency GPS errors

and a significant factor for differential GPS”
-Report of Policy Workshop developed by AMS (2011)
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Damages Caused by Extreme Solar Storms

* On October 2003, WAAS service stopped for 30 hours due to the solar storms
(Severe space weather events - a workshop report _National Research Council, 2008)
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* On December 6, 2006, a solar flare created an unprecedented intense solar
radio burst causing large numbers of receivers to stop tracking the GPS signal.
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Space weather effects on GPS
= GPS signal delay/signal loss ™ PNT accuracy degradation

= Degrades system integrity/continuity/availability

~N

J

Storm Enhanced Density

11/20/2003, 20:16:00UT

14 g

Veticallonosghers Defay n

76 -70 -65

Ionospheric delay error of up to 40 ~
50m—> accuracy degradation

(Datta-Barua et al., 2010)

Traveling Iono. Disturbance

11/10/2004, 12:53:00UT
< 10

Latitude
[s)
TECU

-10

120 130
Longitude

Large delay variation and signal
loss~> accuracy and continuity

degradation
(Yoon and Lee, 2014)

-

'Sole‘lr flare

T . .
coronal mass ejection
Solar X-rays, solar radiation

GNSS performance
degradation

Scintillation

o T £ S
Time between Deep Fades

Simultaneous satellite signal loss

> accuracy and continuity
degradation

(Seo et al., 2011)

Plasma Bubble

High sola:

A i
e & ¢ ¢ - - -
N 3 2 N L) =~
Electron density (m’) -
Lathate
s L Ly P R
83 5 4o a5 3 8 K8 Y
.
a e —— H
g H
z
: £
B E
e‘:_u TR T
]
Vesical delay (m|

...............

Large delay variation 2> accuracy
and continuity degradation

(Saito et al., 2010)
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GPS (Global Positioning System)

» 24+ Satellites since FOC in 1995
(space vehicles, or SVs)

6 orbit planes, 60 degrees apart
55 degrees inclination

12-hour (11 hr, 58 min) orbits
26,560 km from earth’s center
20,182 km mean altitude
moving ~2.7 km/sec
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GPS error source

Signal in Space (SIS) error "(?’ &

- ephemeris

- satellite clock
-ete @f %

Receiver and Y
Local environment error Vo
- receiver noise -

- multipath

- etc
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lonospheric Effects on GPS Propagation delay
e Due to a change in the speed of the signal
e Group delay and Phase advance
| —c.Ap — 40.3TEC ~ 40.3TEC
p = C ATy = £ 2 6~ £2
e Depends on the number of free electrons in the path of signal
(TEC: total electron content)
e TECU: TEC unit
1 TECU = 10*® electrons/m?
1 TECU corresponds to a change in ionospheric delay
at L1 of about 16 cm
e Varies with location, local time, season, geomagnetic and
solar activity
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lonospheric effects on GPS Scintillation

e Irregularities in the distribution of free electrons can
scatter radio waves

e Rapid fluctuations in the amplitude and phase of
received signals

e May induce loss of lock

e Characterized by Amplitude scintillation parameter, S4
and Phase scintillation parameter, Gy,

e Rare at mid-latitudes

e Can be severe after local sunset in the equatorial
regions, especially near the peak of solar cycle
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Propagation delay as a function of (magnetic) latitude

Geographic Latitude (deg)

i 'L't;uu-

-60
Geographic Longitude (deg)

Range Delay of L1 SSN =185 Dgy= 81

[ Lo e 4

meters at L1,

Geographic Latitude (deg)

Geographic Longitude (deg)

Contours of equal vertical
ionospheric range delay, in

for typical solar maximum
equinox conditions at 00
UT [SBAS lono WG, 2003]

™~

Y,




Scintillation as a function of (magnetic) latitude

(P.Kintner, et al.)
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lonospheric delay estimation - Standalone GPS

e lonospheric delay estimation in a single frequency signal
e Delay model is provided by Nav message. (ex. Klobuchar model)
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A2, A4: navigation message (A1, A3 are fixed)
OF (el)=1.0+16.0" (0.53-¢/)’

e lonospheric delay estimation in a dual frequency signal
e Estimation based on combination of dual frequency measurements
fL21 fL22
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Differential GPS — SBAS

Geostationary GPS
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SBAS APV-I Coverage (current)

Availability as a function of user location
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lonospheric Delay Estimation - SBAS

* Single frequency SBAS provides (vertical) ionospheric delay
estimates at each IGPs (IGPs, lonospheric Grid Points)

e Delay estimates from four IGPs around the user is used to
compute lonospheric delay corrections and user protection levels

IGP formation User algorithm
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Solar Cycle with Great Magnetic Strom

Cycle 24 Sunspot Number {(V2.0) Prediction (2016/01)

Hathaway NASA/ARC
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WAAS APV service vs. geomagnetic activity
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Planar Fit and GIVE

Source: T. Sakai, et al, “Modeling lonospheric Spatial Threat Based on Dense
Observation Datasets for MSAS” ION GNSS 2011.c

Vertical Delay * Developed for WAAS;
* MSAS employs the same algorithm;

Cutoff Radius

IPP * Assume ionospheric vertical delay can be

modeled as a plane;

IGP * GIVE (grid ionosphere vertical error):
anertainty of the estimation including
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_,_;—‘: spatial and temporal threats.
* GIVE Equation Spatial Threat Model
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lonospheric Spatial Threats

Source: S. Datta-Baura, et al, “lonospheric Threats to SBAS” ION GNSS 2004
10/31/2003, 05:00:00UT
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lonosphere Anomaly Front Model:
Potential Impact on a GBAS User

Simplified lonosphere Front Model: ! /
a ramp defined by constant slope and width /! /!
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GBAS Ground Station

Stationary lonosphere Front Scenario:
lonosphere front and IPP of ground station IPP move with same velocity.

K Maximum Range Error at DH: 425 mm/km X 20 km = 8.5 meters 1%




g Abnormal Gradients:

Mid-Latitudes vs. Low-Latitudes
Over CONUS

425 mm/km max.

Over Brazil

(1 1/20/2003, 20:15 IIT) (3/1/2014, 01:00 IIT)
850 mm/km max.
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Regional lonospheric Delay Map (Video)

lono. Map 03/01/2014, 00:00:00UT
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Solutions

e Understanding space weather

e Continue to advance present understanding of space
weather and its impacts on satellite-based navigation
systems and other critical infrastructure.

e Develop better space weather predictions.

e Strengthen international collaboration

e Improve spatial coverage of ionospheric and space
weather measurements.

e Reduce vulnerability of safety-critical systems to space
weather
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Thank You

msyoon@Kkari.re.kr
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